
Toward Facilitating Root Cause Localization in Fuzzing

Katsunori Aoki
The University of Tokyo

aoki@os.ecc.u-tokyo.ac.jp

Takahiro Shinagawa
The University of Tokyo
shina@ecc.u-tokyo.ac.jp

1 Abstract

Fuzzing is a popular approach to efficient vulnerability dis-
covery. In particular, mutation-based fuzzing progresses more
efficiently than fuzzing with random input by gradually mutat-
ing the input seed based on feedback and thereby continuously
providing approximately valid input to the target program. By
automatically giving a large number of inputs, a fuzzer can
generate a large amount of information about the target pro-
gram execution in crash cases as well as non-crash cases.

Unfortunately, the information reported by the fuzzer only
shows the location of the crash, not necessarily the location
of the root cause. In fact, the crash location is often far from
the root cause in the source code, making root cause analysis
difficult and causing the inflation problem where a single root
cause can cause multiple crashes in different locations. Root
cause localization still relies on daunting manual analysis,
and its facilitation is a major research challenge.

Several studies attempted to automate root cause analysis
using symbolic execution [3]. However, they require careful
consideration to avoid path explosion during the symbolic
(re-)execution of the target program. AURORA [1] generates
root cause predicates, even for complex bugs such as type
confusion, by generating many similar inputs derived from
the crash input and comparing the internal state of binary
programs. However, AURORA generates numerous false pos-
itives and provides only binary-level debugging information.

Our goal is to provide human-friendly information that en-
ables quick approach to and easy understanding of the root
cause, using only the information obtained during fuzzing.
The key idea is to generate a difference in the data flow
graphs between the crashed execution and the normal ex-
ecution immediately preceding the crashed one. In mutation-
based fuzzing, the input that caused a crash is generated by
slightly mutating the input to the previous normal execution.
Therefore, the difference in the data flow graphs localizes the
data source that caused the crash, i.e., the point that is likely to
be closer to the root cause. Since crash and normal execution
information is already available, no re-execution is required.

In addition, to make understanding root cause easier, lexical
information at the source code level, such as symbol and type
names, is added to the data flow graph to facilitate reading of
semantic information such as type confusion.

For the implementation, we used LLVM for source code
instrumentation, and created a system that can record data
flows in fuzzing with lexical level information and generate
a differential data flow graph with the lexical information
from the crash and the previous executions. For evaluation,
we used Magma [2], a vulnerability dataset for evaluating
fuzzing performance that reproduces known vulnerabilities in
software libraries, with normal and crash inputs as artifacts.

In our preliminary experiments, we applied the proposed
method to four known vulnerabilities in Magma and measured
the distance on the data flow graph between the boundary the
difference, which corresponds to the point that changed the
data flow, and the point where the patch was actually applied
(patch point). As a result, we found that the distance was 0 in
three cases; in two cases, the patch point was the control flow
governing the boundary of the difference, and in the other
case, the patch point was tangent to the boundary. In another
case, a sanitization patch was applied to a point at distance
1 from the boundary. In all cases, we did not need to follow
the data flow far from the boundary, and we could find the
patch point by observing near the boundary or by focusing on
interesting functions such as malloc. Thus, we demonstrated
that the proposed method effectively localizes the root cause.

In the future, we evaluate our approach in more crash cases.

References

[1] T. Blazytko et al. AURORA: Statistical Crash Analysis for
Automated Root Cause Explanation. In Proc. 29th USENIX
Security Symposium, Aug. 2020.

[2] A. Hazimeh et al. Magma: A Ground-Truth Fuzzing Benchmark.
Proc. ACM Meas. Anal. Comput. Syst., 4(3), Dec. 2020.

[3] C. Yagemann et al. ARCUS: Symbolic Root Cause Analysis of
Exploits in Production Systems. In Proc. 30th USENIX Security
Symposium, Aug. 2021.


	Abstract

