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• Fuzzing is a method to find vulnerabilities

◦ It finds a lot crashes automatically by 

generating inputs

• Root cause analysis is difficult

◦ Fuzzers only reports crash location

◦ Root cause is often far from crash location

• Symbolic execution [1]

◦ Collect conditions to trigger crash during execution  

◦  Path explosion problem 😡

• Statistical Crash Analysis [2]

◦ Compare behavior of predicates using similar inputs

◦  Binary-level information and high false positive rate 😡

Our goal: 

Quickly and easily understand root cause 

Evaluation dataset:

• Magma [3] :  Reproduces known software vulnerabilities

◦  Provides (non-)crash inputs as artifacts

Result (4 cases): 

• (Distance 0) Case 1, 2: patch point was control flow governing 

the boundary of difference

• (Distance 0) Case 3: patch point was tangent to the boundary

• (Distance 1) Case 4: a sanitization patch was applied to a 

point at distance 1 from the boundary

Case 4: popper PDF015

• In all cases, 

◦  no need to follow data flow far from the boundary

◦  patch point located near the boundary

• Evaluate our approach in more crash cases

• Evaluate whether our approach eases root cause analysis 

compared to manual analysis and previous studies
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• Lexical information extraction: source code instrumentation using LLVM 

• Data flow tracing: created ourself from scratch

Evaluation method:

• Measure distance between data flow difference and patch point

How to read graph:

Key ideas:

(a) Difference of DFG between crashed and normal execution

(b) Adding lexical information at the source code level
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Condition :()

objStream :(ObjType)

type: (objType) 

objDict :(ObjType) type :(Object *)

(Omittied)Data flow difference

Crash point

Patch point (where the patch actually applied)

type != objStream

if (!m_objStr.isStream())
    return false;

Compare data flows of (non-)crash inputs, 
and highlight nodes which (dis)appears in 
other graph. 

Condition :()

L :(char) magic[1] :(char) 

(b) Extract lexical information from source code

(a-1) Mutation-based  fuzzers 
generates slightly different inputs

(a-2) Difference in data flow graphs
 is likely to be closer to root cause
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if (magic[1] != ‘L’ ) 
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 (c) facilitate reading of semantic information
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