Toward Facilitating Root Cause Localization in Fuzzing
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1| Background 2] Previous Root Cause Analysis

- Fuzzing is a method to find vulnerabilities - Symbolic execution [1]
> |t finds a lot crashes automatically by oot cause o Collect conditions to trigger crash during execution
generating inputs ; o IQ Path explosion problem &

- Root cause analysis is difficult - Statistical Crash Analysis [2]

o Fuzzers only reports crash location o Compare behavior of predicates using similar inputs

Crash location

o Root cause is often far from crash location - I3 Binary-level information and high false positive rate @&

‘3] Human friendly data flow graph (DFG)

Our 903|1 (a-1) Mutation-based fuzzers (a-2) Difference in data flow graphs (c) facilitate reading of semantic information

: - generates slightly different inputs is likely to be closer to root cause
Quickly and easily understand root cause
InputA |a|b|c|d|e]|f InputA > """~ >
InputA' |a|B|c|d|e]f InputA — =, . . magic[1] :(char)

Key ideas:

(a) Difference of DFG between crashed and normal execution (b) Extract lexical information from source code Conditon |

(b) Adding lexical information at the source code level if (magic[1] != ‘L’ )

4 I ImplementUtlﬂn = Lexical information extraction: source code instrumentation using LLVM

= Data flow tracing: created ourself from scratch

5] Preliminary experiments

Evaluation dataset: Result (4 cases):
- Magma [3]: Reproduces known software vulnerabilities - (Distance 0) Case 1, 2: patch point was control flow governing
o Provides (non-)crash inputs as artifacts the boundary of difference

- (Distance 0) Case 3: patch point was tangent to the boundary
Evaluation method:

- (Distance 1) Case 4: a sanitization patch was applied to a
- Measure distance between data flow difference and patch point

point at distance 1from the boundary
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Patch point (where the patch actually applied) type: (obiType)

if (!m_objStr.isStream())
return false;

and highlight nodes which (dis)appears in + objDict :(ObjType),) {_ type:(Object*) (Omitted It par
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- |[n all cases,
Crash point

Condition :()

o No need to follow data flow far from the boundary
type != objStream

o patch point located near the boundary

6] Future work
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