
Takahiro Shinagawa
The University of Tokyo

shina@ecc.u-tokyo.ac.jp

Katsunori Aoki
The University of Tokyo

aoki@os.ecc.u-tokyo.ac.jp

• Fuzzing is a method to find vulnerabilities

◦ It finds a lot crashes automatically by

generating inputs

• Root cause analysis is difficult

◦ Fuzzers only reports crash location

◦ Root cause is often far from crash location

• Symbolic execution [1]

◦ Collect conditions to trigger crash during execution

◦ Path explosion problem 😡

• Statistical Crash Analysis [2]

◦ Compare behavior of predicates using similar inputs

◦ Binary-level information and high false positive rate 😡

Our goal:

Quickly and easily understand root cause

Evaluation dataset:

• Magma [3] : Reproduces known software vulnerabilities

◦ Provides (non-)crash inputs as artifacts

Result (4 cases):

• (Distance 0) Case 1, 2: patch point was control flow governing

the boundary of difference

• (Distance 0) Case 3: patch point was tangent to the boundary

• (Distance 1) Case 4: a sanitization patch was applied to a

point at distance 1 from the boundary

Case 4: popper PDF015

• In all cases,

◦ no need to follow data flow far from the boundary

◦ patch point located near the boundary

• Evaluate our approach in more crash cases

• Evaluate whether our approach eases root cause analysis

compared to manual analysis and previous studies

References
[1] C. Yagemann et al. ARCUS: Symbolic Root Cause Analysis of Exploits in

Production Systems. In Proc. 30th USENIX Security Symposium, Aug. 2021.
[2] T. Blazytko et al. AURORA: Statistical Crash Analysis for Automated Root

Cause Explanation. In Proc. 29th USENIX Security Symposium, Aug. 2020.
[3] A. Hazimeh et al. Magma: A Ground-Truth Fuzzing Benchmark. Proc. ACM

Meas. Anal. Comput. Syst., 4(3), Dec. 2020.

PDF015

Case 4

This is dict type Object

Patch point (Distance 1 from boundary)

Expected stream type

Crash point

PNG007

Case 1

!"#$%%&'()&*%(+,-%.

Crash point
!"#$%%$&'(!)*+#,$

Patch point (Distance 0 from boundary)

Case 1: libpng PNG007

• Lexical information extraction: source code instrumentation using LLVM

• Data flow tracing: created ourself from scratch

Evaluation method:

• Measure distance between data flow difference and patch point

How to read graph:

Key ideas:

(a) Difference of DFG between crashed and normal execution

(b) Adding lexical information at the source code level

Toward Facilitating Root Cause Localization in Fuzzing

Background1 2 Previous Root Cause Analysis

Human friendly data flow graph (DFG)3

Implementation4

Preliminary experiments

6 Future work

5

Crash location

Root cause

Condition :()

objStream :(ObjType)

type: (objType)

objDict :(ObjType) type :(Object *)

(Omittied)Data flow difference

Crash point

Patch point (where the patch actually applied)

type != objStream

if (!m_objStr.isStream())
 return false;

Compare data flows of (non-)crash inputs,
and highlight nodes which (dis)appears in
other graph.

Condition :()

L :(char) magic[1] :(char)

(b) Extract lexical information from source code

(a-1) Mutation-based fuzzers
generates slightly different inputs

(a-2) Difference in data flow graphs
 is likely to be closer to root cause

Input A

Input A'

a b c d e f

a B c d e f

if (magic[1] != ‘L’)

Input A

Input A'

 (c) facilitate reading of semantic information

Abstract:

