Toward Facilitating Root Cause Localization in Fuzzing

Abstract:
Katsunori Aoki Takahiro Shinagawa 8) i 5@
The University of Tokyo The University of Tokyo LA
aoki@os.ecc.u-tokyo.ac.jp shina@ecc.u-tokyo.ac.jp -.i;——'i_._n_—_':

1| Background 2] Previous Root Cause Analysis

- Fuzzing is a method to find vulnerabilities - Symbolic execution [1]
> |t finds a lot crashes automatically by oot cause o Collect conditions to trigger crash during execution
generating inputs ; o IQ Path explosion problem &

- Root cause analysis is difficult - Statistical Crash Analysis [2]

o Fuzzers only reports crash location o Compare behavior of predicates using similar inputs

Crash location

o Root cause is often far from crash location - I3 Binary-level information and high false positive rate @&

‘3] Human friendly data flow graph (DFG)

Our 903|1 (a-1) Mutation-based fuzzers (a-2) Difference in data flow graphs (c) facilitate reading of semantic information

: - generates slightly different inputs is likely to be closer to root cause
Quickly and easily understand root cause
InputA |a|b|c|d|e]|f InputA > """~ >
InputA' |a|B|c|d|e]f InputA — =, . . magic[1] :(char)

Key ideas:

(a) Difference of DFG between crashed and normal execution (b) Extract lexical information from source code Conditon |

(b) Adding lexical information at the source code level if (magic[1] != ‘L’)

4 I ImplementUtlﬂn = Lexical information extraction: source code instrumentation using LLVM

= Data flow tracing: created ourself from scratch

5] Preliminary experiments

Evaluation dataset: Result (4 cases):
- Magma [3]: Reproduces known software vulnerabilities - (Distance 0) Case 1, 2: patch point was control flow governing
o Provides (non-)crash inputs as artifacts the boundary of difference

- (Distance 0) Case 3: patch point was tangent to the boundary
Evaluation method:

- (Distance 1) Case 4: a sanitization patch was applied to a
- Measure distance between data flow difference and patch point

point at distance 1from the boundary

OW t o r e a d r a h - :@B}ﬁ;ne -(ObjType) <free> 108;5;:;5:; fiue :(bool) <fetch> (1084962)3
H PDFOI5 e e
g p u PNGOO7 func-param func-param
Case 1 Cased e P iy
istr :(Stream *) <Lexer>) {xrefA :(XRef *) <Lexer> (1084963

~ &

() (1084964).
. . \iﬂ-param call-param
. Patch point (Distance 0 from boundary) "tﬁi—s_:_l_-e-x-er-"-ll-_;;er;-1-()-8:5;6%\, .
Data flow difference (Omittied) |
Compare data flows of (non-)crashinputs, l. ______

othergraph. 7 \ / _____

Patch point (where the patch actually applied) type: (obiType)

if (!m_objStr.isStream())
return false;

and highlight nodes which (dis)appears in + objDict :(ObjType),) {_ type:(Object*) (Omitted It par

Case 1: libpng PNGOO7 Case 4: popper PDFO15

objStream :(ObjType)

- |[n all cases,
Crash point

Condition :()

o No need to follow data flow far from the boundary
type != objStream

o patch point located near the boundary

6] Future work

References

[1] C.Yagemann et al. ARCUS: Symbolic Root Cause Analysis of Exploits in

- Evaluate our approach in more crash cases Production Systems. In Proc. 30th USENIX Security Symposium, Aug. 2021
[2] T.Blazytko et al. AURORA: Statistical Crash Analysis for Automated Root
- Evaluate whether our approach eases root cause analysis Cause Explanation. In Proc. 29th USENIX Security Symposium, Aug. 2020.
[3] A.Hazimeh et al. Magma: A Ground-Truth Fuzzing Benchmark. Proc. ACM
compared to manual analysis and previous studies Meas. Anal. Comput. Syst, 4(3), Dec. 2020

