
This is the accepted version of the paper published in CCGrid 2020.
The published version is available at http://dx.doi.org/10.1109/CCGrid49817.2020.00-62.

Multi-resource Low-latency Cluster Scheduling
without Execution Time Estimation

Hidehito Yabuuchi
The University of Tokyo

yabuuchi@os.ecc.u-tokyo.ac.jp

Takahiro Shinagawa
The University of Tokyo
shina@ecc.u-tokyo.ac.jp

Abstract—Cluster scheduling based on the prior estimation
of job execution time is vulnerable to inaccurate estimates. To
avoid performance degradation due to this misestimation, recent
studies have proposed cluster schedulers that do not rely on
prior estimation. However, they do not assume tasks with multi-
type heterogeneous computing resource demands, resulting in
high job latency in real environments. Unfortunately, the optimal
scheduling of such tasks is inherently difficult. In this paper, we
present a cluster scheduler that heuristically handles multi-type
heterogeneous resource demands without prior estimation. To
reduce job latency, especially that of short jobs, our scheduler
employs two techniques: (1) distributing tasks to nodes based
on the similarity between resource demands and availability to
simultaneously run as many tasks as possible, and (2) finding a
suitable set of tasks for preemption in a node to minimize the
number of task preemptions. Experimental evaluations using a
real cluster and practical workloads confirm that our scheduler
reduced the 90th percentile of slowdown rates by 6.4% and the
99th percentile by 29% compared to a naive extension of Kairos,
an existing non-estimation-based scheduler. The experimental
results also demonstrate that our scheduler is more effective when
workloads have higher heterogeneity in resource demands.

Index Terms—Cluster scheduling, resource management

I. INTRODUCTION

Using computer clusters consisting of many nodes and large
storage is now common for processing large amounts of data.
A cluster is usually shared by many users in a company or
a research institute, and therefore it must handle jobs with
various characteristics. Each job consists of several tasks, and
each task demands various types and amounts of computing
resources (e.g., CPU, memory, and I/O bandwidth) specified
by the users. Cluster schedulers are supposed to allocate the
demanded resources to the tasks and manage job execution

100 101 102 103 104

Execution time [s]

0.00

0.25

0.50

0.75

1.00

CD
F

Google
Alibaba

Fig. 1. CDF of task execution times extracted from cluster traces at Google
and Alibaba (2018 version). The workloads consist of many short jobs and a
few long jobs.

to minimize the latency of each job (i.e., the time from job
submission to completion) and achieve high job throughput.

One of the characteristics of recent cluster workloads is
heterogeneity in execution time [1], [2]. Fig. 1 plots the
cumulative distribution function (CDF) of task execution times
extracted from cluster traces at Google [3] and Alibaba (2018
version) [4]. While most tasks have short execution times of a
few seconds to hundreds of seconds, a few tasks take a couple
of hours. The coefficients of variation (CoV) reach up to 2.97
and 6.60 for Google and Alibaba traces, respectively. This
is because typical modern cluster workloads are composed of
short jobs, such as database queries and software development,
and long jobs, such as large data conversion and analysis. Short
jobs generally have stringent latency requirements, while long
jobs can tolerate relatively high latency. Thus, reducing the
latency of short jobs has become increasingly important for
modern cluster schedulers.

To reduce the latency of short jobs in the face of hetero-
geneous execution time, most existing cluster schedulers rely
on the prior estimation of job execution time [5]–[16]. For
example, prioritizing a job that is expected to be short reduces
the time until the job completes. The estimates are usually
generated by a system or provided by users before scheduling.
The accuracy of this estimation greatly affects the performance
of estimation-based schedulers. Unfortunately, estimation sys-
tems often fail to achieve sufficient accuracy [17], and user
predictions are generally also inaccurate [18], leading to sub-

c⃝ 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Hidehito Yabuuchi, Takahiro Shinagawa. Multi-resource Low-latency Clus-
ter Scheduling without Execution Time Estimation. In Proceedings
of the 20th IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGrid 2020), pp. 310-319, May 2020.
http://dx.doi.org/10.1109/CCGrid49817.2020.00-62



TABLE I
STATISTICS OF RESOURCE DEMANDS IN CLUSTER TRACES AT GOOGLE

AND ALIBABA (2018 VERSION).

CPU CoV Memory CoV Corr. Coef.
Google 0.81 0.91 0.33
Alibaba 0.38 0.34 0.28

optimal scheduling performance [19], [20].
To avoid performance degradation due to misestimation,

recent studies have proposed cluster schedulers that do not rely
on prior estimation [17], [21]–[23]. They reduce the latency
of short jobs by, for example, approximating a job’s execution
time by its cumulative executed time (CET) and prioritizing
jobs with short CETs. However, these schedulers either do not
explicitly handle resource allocation, or they assume that each
task demands a single-type homogeneous amount of resources.
This limits their applicability to real-world clusters.

In fact, tasks in real environments demand multi-type re-
sources, and their amounts are highly heterogeneous [1], [7].
Table I shows the statistics of resource demands in the Google
and Alibaba traces. In both traces, tasks demand two types
of resources: CPU and memory. In the Google trace, the
CoVs of the CPU and memory demands reach 0.81 and 0.91,
respectively. Moreover, the correlation coefficients between the
CPU and memory demands are small in both traces: 0.33 and
0.28 in the Google and Alibaba traces, respectively. Grandl
et al. reported that other production clusters also have little
correlation between the demands of various resource types [7].

Cluster schedulers must consider these characteristics; oth-
erwise, they will likely produce sub-optimal performances. If
a scheduler considers only a particular type of resource, other
resources might be overallocated. For example, the default
schedulers of YARN [24] consider only memory demands,
which can overallocate CPU and slowdown CPU-intensive
jobs. Also, if a scheduler allocates resources in proportion to
a single type of resource, as in slot-based schedulers, internal
resource fragmentation can occur, leading to low utilization.
Unfortunately, scheduling jobs with multi-type heterogeneous
resource demands is far from trivial; it is analogous to the
multi-dimensional online bin packing problem. The bin pack-
ing problem is NP-hard even in the one-dimensional offline
case, and more difficult in the multi-dimensional online case.

In this paper, we present a cluster scheduler that heuris-
tically handles multi-type heterogeneous resource demands
without relying on the prior estimation of job execution time.
Our scheduler is based on Kairos [17], which uses preemption
to reduce the chance of head-of-line (HoL) blocking while not
assuming prior estimation. Our goal in this paper is to extend
Kairos to reduce job latency, especially that of short jobs, in
the face of multi-type heterogeneous resource demands.

To achieve this goal, we introduce two heuristic techniques:
(1) To simultaneously run as many tasks as possible on a
cluster, a cluster-level central scheduler distributes a task to
a node whose distribution of available resources is similar to

that of the task’s resources demand. This technique reduces the
time from job submission to starting under medium and high
loads. (2) To minimize the number of task preemptions, a node
scheduler on each node finds a suitable set of running tasks for
preemption that meets the multi-type heterogeneous resource
demand of each waiting task. This technique minimizes the
number of unnecessary preemptions, thus reducing the time
from job starting to completion under high loads. Coupled
together, these techniques reduce job latency, the time from
job submission to completion.

We implemented a prototype of our scheduler by extending
YARN and compared its performance against a naive extension
of Kairos. On a 32-node real cluster and with workloads
derived from the well-studied Google trace, our scheduler
reduced the 90th percentile of slowdown rates by 6.4% and
the 99th percentile by 29%. We also confirmed that our
scheduler is more effective under higher heterogeneity in
resource demands and that it incurs only negligible overhead.

The remainder of this paper is organized as follows: In
Sec. II, we briefly discuss related work. We describe the
design of our scheduler in Sec. III and its implementation on
YARN in Sec. IV. We experimentally evaluate our scheduler
in Sec. V. Finally, Sec. VI concludes the paper.

II. RELATED WORK

A. Cluster Scheduling with Execution Time Estimation

To achieve low latency for short jobs in the face of heteroge-
neous execution time, most existing cluster schedulers rely on
the prior estimation of execution time. EASY [5] introduced
backfilling, which executes short jobs when a long job at the
top of the queue cannot run due to resource shortage. Carastan-
Santos et al. [6] argued that Smallest Area First policy with
backfilling provides a performance improvement over EASY
while maintaining simplicity. Tetris [7], Graphene [8], Yaq [9],
and Peacock [10] reduce the latency of short jobs by priori-
tizing them through Shortest Remaining Time First policy.

Hybrid schedulers combine a centralized scheduler and a
set of distributed schedulers to handle short and long jobs
independently. Mercury [11] makes high-quality scheduling
decisions for long jobs in a centralized component and quickly
assigns short jobs to workers in distributed components.
Hawk [12] and Eagle [13] reserve a portion of cluster re-
sources to guarantee the immediate execution of short jobs.
Pigeon [14], a hierarchical scheduler that divides workers into
groups, also reserves some workers for short jobs.

Both Big-C [15] and Neptune [16] reduce the latency of
short jobs by suspending long jobs and dynamically reassign-
ing their resources to short jobs. Big-C leverages container-
based virtualization and Neptune uses coroutines. Neptune
assumes that each task demands a single CPU core.

The estimates are usually generated by a system or provided
by users before scheduling. For a recurring job, a system
can estimate the execution times of the job’s tasks from
its history [25]. Also, existing studies presented estimation
techniques based on profiling [26] or execution in a simulated



environment [27]. Unfortunately, they cannot efficiently esti-
mate the execution time with sufficient accuracy [17], and user
predictions are generally also inaccurate [18]. Scheduling jobs
in the belief that the estimates are reliable will likely result in
sub-optimal scheduling performance [19], [20].

To reduce estimation error, JamaisVu [28] tracks the estima-
tion accuracy with different sets of job features and adaptively
uses the most effective feature set. 3Sigma [19] mitigates
performance degradation due to misestimation by leveraging
full distributions of execution time history instead of point
estimates. Although these studies had some success, estimation
error is essentially inevitable, and estimation-based schedulers
still cannot achieve optimal scheduling performance.

B. Cluster Scheduling without Estimation

As another approach to coping with the misestimation of
execution time, recent studies have proposed cluster sched-
ulers that do not rely on the prior estimation of execution
time. A. Ilyushkin et al. presented several non-estimation-
based scheduling algorithms for DAG-structured jobs and
found that a backfilling-based algorithm could reduce job
latency in practice [21]. Tyrex [22] avoids HoL blocking by
partitioning cluster resources and migrating long-running jobs
to a dedicated partition to make room for other jobs. Both
LAS_MQ [23] and Kairos [17] exploit jobs’ cumulative exe-
cuted times by following Least Attained Service policy [29].
Kairos leverages task preemptions to reduce the chance of HoL
blocking. Although these schedulers either do not explicitly
handle resource allocation or assume that each task demands
single-type homogeneous resources, tasks in real environ-
ments demand highly heterogeneous amounts of resources of
multiple types [1], [7]. Scheduling without considering this
characteristic results in sub-optimal performance.

C. Handling Multi-type Heterogeneous Resource Demands

Dominant Resource Fairness (DRF) [30] and its derivatives
satisfy desirable properties for fairness among jobs in the
face of multi-type heterogeneous resource demands. However,
DRF does not focus on other performance metrics, such
as job latency and throughput. To improve job throughput,
Tetris increases resource efficiency by adopting a heuristic
algorithm that packs multi-type heterogeneous resource de-
mands into node capacities. However, Tetris relies on esti-
mated execution time to reduce the latency of short jobs.
Skewness-avoidance multi-resource allocation (SAMR) [31]
efficiently allocates virtual machines that demand multi-type
heterogeneous resources. SAMR works for IaaS clouds, which
have virtually unlimited resources, meaning that it cannot be
straightforwardly applied to most clusters, which have limited
resources. RUPAM [32] is a cluster scheduler for Spark [33]
and is aware of heterogeneity in both resource demands and
underlying hardware. For each resource type, RUPAM greedily
matches a node that has the lowest contention for the type
to a task that likely has the type as its bottleneck. RUPAM
does not consider multiple resource types simultaneously in
its scheduling process. DeepPlace [34] learns a job scheduling

strategy using deep reinforcement learning and is aware of
multiple resource types. It has a scalability problem originating
from the nature of deep reinforcement learning; as the number
of nodes or the number of job types increases, the size of the
search space increases exponentially. This makes the learning
process take a long time and converge to a worse value.

III. DESIGN

A. Assumptions

We assume that tasks are preemptible, i.e., they can be
suspended when needed and resumed thereafter. Suspension
preserves the execution progress of a preempted task, and
the allocated resources become available to other tasks. At
the resumption, the resources are restored to the preempted
task, and it resumes running instead of starting again from the
beginning. This preemption can be realized by using container-
based virtualization as in Big-C [15].

For simplicity, we also assume that tasks in a job can
be executed independently. Supporting dependencies between
tasks in a job will be tackled in our future work.

B. Architecture Overview

We extend Kairos [17] to efficiently handle multi-type het-
erogeneous resource demands. Similar to Kairos, our proposed
cluster scheduler has a two-level hierarchical architecture
consisting of a central scheduler on a master node and a
node scheduler on each worker node (Fig. 2). Submitted jobs
are first stored in a queue at the central scheduler in order
of their submission. The central scheduler distributes tasks
in each job one by one consecutively to appropriate nodes.
The task distribution algorithm is intended to be simple so
that the central scheduler will not be a bottleneck in a cluster
management system. We discuss the overhead and scalability
of our cluster scheduler in Sec. V-E.

Then, the node schedulers locally manage the execution of
the assigned tasks on each node. Upon a task assignment,
a node scheduler immediately starts the task if the node
has sufficient resources available for the task’s demand (i.e.,
resources not allocated to other running tasks). Otherwise, the
node scheduler tries to suspend one or more running tasks
to make room for the new task. Waiting tasks (i.e., those
not yet started or suspended) are stored in a per-node queue,
and the node scheduler later tries to start or resume them.
The node schedulers handle the assigned tasks locally, and
by design, they do not support migrating tasks across nodes.
This is because task migrations incur extra costs, such as
building an execution environment and transferring input data
and suspended progress [16], [17].

As mentioned in Sec. I, it is becoming increasingly impor-
tant for modern cluster schedulers to reduce the latency of
short jobs. We divide this goal into two parts and address them
in separate scheduler components: (1) the central scheduler
reduces the time from job submission to starting, and (2) the
node schedulers reduce the time from job starting to comple-
tion. The following two subsections describe the scheduling
methods employed in these components in detail. Note that



Worker node 1

Node scheduler

Task
Task

Waiting Running

(Re)start Suspend

...

Worker node N

Node scheduler

Master node

Job

Central scheduler

Job queue

Assi
gn ta

sk

User

Submit 
job

Assign task

Fig. 2. Two-level hierarchical architecture of our cluster scheduler, which
consists of a central scheduler and per-node schedulers.

improving job throughput is not the primary goal of our sched-
uler. Nevertheless, experimental evaluations (see Sec. V-B)
show that our scheduler did not degrade job throughput.

C. Central Scheduler

1) Reducing the Time from Submission to Starting: In the
central scheduler, we aim to reduce the time from job submis-
sion to starting. To achieve this goal, the central scheduler must
simultaneously run as many tasks as possible on the cluster.
This can be achieved by packing multi-type heterogeneous
resource demands into the nodes’ resource capacities.

When each task demands multi-type heterogeneous re-
sources, the problem of packing tasks to nodes is analogous to
the multi-dimensional online bin packing problem. Each task
and node correspond to a ball and a bin, respectively. The
balls and bins have the same dimensions as the number of
resource types, and their sizes are proportional to the amounts
of tasks’ resource demands and nodes’ capacities, respectively.
Although the bin packing problem is NP-hard even in the
one-dimensional offline case, and more difficult in the multi-
dimensional online case, there exists a heuristic that efficiently
packs balls into bins in the multi-dimensional cases [35].
We adapt this heuristic to the task distribution in the central
scheduler to decide a node to which a task should be assigned.

In our heuristic, the central scheduler defines similarity
between a task’s resource demand and each node’s availability,
and it assigns the task to the node with the highest similarity.
As an illustration, consider the situation depicted in Fig. 3.
The central scheduler is trying to assign a task to one of two
nodes. Because the task demands more CPU than memory and
the right node has more available CPU than that of the left
node, the central scheduler considers the right node to be more
similar to the task than the left node. The nodes do not need to
have lots of available memory because the task demands only a
small amount of memory. By using this heuristic, the resources
on each node will be efficiently used up for all types. Note
that Tetris [7] adopts a similar heuristic for cluster scheduling,
but it is done in a different way to ours. While Tetris uses the
heuristic (coupled with estimated execution time) to decide

Task

CPU
Mem Demand Dr

Node

CPU

Mem

Allocated

Available
Fr

Low
similarity

Node

CPU
Mem

Capacity
Cr

High
similarity

Fig. 3. Example of how nodes are compared by their similarity to a task.
The right node has a higher similarity to the task.

which task to execute next, our central scheduler uses it to
decide a node to which a task should be assigned.

Specifically, given a task and a list of nodes, the central
scheduler calculates similarity scores between the task and
each node. The similarity score between a task and a node is
the dot product of the demanded and available resources:

Similarity(task,node) =
∑
r∈R

DrFr

Cr
2 (1)

where R is the set of resource types, and Dr and Fr are the
amounts of resources demanded by the task and available on
the node, respectively, for type r. To ensure that this formula is
invariant to the units of resources, Dr and Fr are normalized
by Cr, the node capacity. Fr is calculated as the difference
between Cr and the total resource demand of the assigned
and uncompleted tasks, and it can thus be negative if the
total demand exceeds Cr. If a node has a higher load than
a threshold (see Sec. III-C2), the node is removed from the
node list. Then, the central scheduler assigns the task to the
node with the highest similarity score, if it exists. In the case of
Fig. 3, because the task demands more CPU than memory, the
resource availability is weighted more heavily towards CPU.
The right node, which has more available CPU than that of
the left node, thus has a higher similarity score.

2) Load Balancing: To reduce the time from job submis-
sion to starting, the central scheduler may assign a task to a
node even when all nodes are over-loaded, i.e., do not have
sufficient resources available for the task. In this case, the
newly assigned task preempts one or more running tasks on
the node and completes quickly if it has only a short execution
time. When distributing a task to over-loaded nodes, it is
essential to balance the loads among nodes [9], [36], [37]. If
a particular node has a much higher load than those of others,
tasks on the highly-loaded node will get fewer chances to run,
resulting in higher latency of the job it belongs to.

To balance the loads among nodes, the above task distri-
bution algorithm (Sec. III-C1) works automatically. By def-
inition, a highly-loaded node has a low or negative amount
of available resources (Fr), and its similarity score calculated
by Eq. 1 is thus lower than those of other less-loaded nodes.
Conversely, the node with the highest similarity score has the
lowest load. Note that, because the similarity scores depend



on the task’s resource demand (Dr), the values of loads also
vary with what task is to be distributed.

In case of a much higher cluster load, the central scheduler
does not assign a task to a node whose load factor is higher
than a configurable threshold L. The load factor is defined
as the norm of the normalized total resource demand of the
assigned and uncompleted tasks:

LoadFactor(node) =

√√√√∑
r∈R

(∑
Dr

Cr

)2

. (2)

If all nodes have higher load factors than L, the central
scheduler waits until the load factor of at least one node falls
below L. The remaining tasks are kept in the central scheduler
and are distributed to low-loaded nodes later so that the tasks
will get more chances to run.

If L is small, under high loads, fewer tasks will be dis-
tributed to nodes. This means that many tasks will have to wait
in the central scheduler, but tasks running on the nodes will
be preempted fewer times. On the contrary, if L is large, the
wait time in the central scheduler will be reduced, but running
tasks will be preempted more often. Sensitivity analysis on the
setting of L (see Sec. V-D) suggests that our cluster scheduler
is robust against sub-optimal settings.

Note that the scheduling algorithm of the central scheduler
does not assume that all nodes have the same resource ca-
pacity. The similarity scores (Eq. 1) and load factors (Eq. 2)
are calculated for each node independently, with normalization
by its capacity. Thus, the algorithm can handle heterogeneous
nodes within a cluster without modification. Also note that
the algorithm does not limit the resource types to CPU and
memory. It can, in theory, handle other types, such as I/O
bandwidth and GPU.

3) Placement Constraints: Modern cluster workloads often
have placement constraints [38], [39], which are divided into
two categories: (1) tasks with hard constraints can run only on
particular types of nodes that satisfy a specific condition, and
(2) tasks with soft constraints prefer particular types of nodes
over others, but can run on others at the cost of slowdown.

The central scheduler handles hard constraints by filtering
out nodes that do not satisfy the condition. To deal with
soft constraints, our scheduler lets users and other system
components specify node preferences by numbers for each
task. Then, the central scheduler weights the similarity scores
by the preference values for each node and picks the node
with the highest weighted score. The setting of the preference
is up to users and other system components because the exact
setting depends on the cluster configuration and workloads.

D. Node Scheduler

1) Reducing the Time from Starting to Completion: As
mentioned in Sec. I, modern cluster workloads have hetero-
geneity in execution time. Short jobs generally have stringent
latency requirements, while long jobs can tolerate relatively
high latency. Thus, the node schedulers should reduce the
latency of short jobs by avoiding HoL blocking. To achieve

Node scheduler

r2
120 s <4, 6>

r1
180 s <1, 1>

r0
300 s <1, 2>

Waiting Running

Resume Suspend

t
30 s <4, 8>

Name
CET <CPU, Mem unit>

Legend

Fig. 4. Example situation where naive LAS causes an unnecessary preemp-
tion. It preempts all running tasks (r0, r1, and r2) to resume t, but r1 does
not need to be preempted to suffice for t’s resource demand.

this, under high loads, the node schedulers must preempt
running tasks of long jobs and (re)start waiting tasks of short
jobs instead. The problem is that our cluster scheduler does
not assume prior information about the execution time.

To tackle this problem, our node schedulers use an algorithm
based on Least Attained Service (LAS) policy [29], similar
to LAS_MQ [23] and Kairos [17]. To reduce the latency of
short jobs without the prior estimation of execution time, LAS
approximates a task’s true execution time by its cumulative
executed time (CET; also called attained service) and prior-
itizes tasks with short CETs. LAS avoids HoL blocking by
preempting long-CET running tasks and (re)starting short-CET
waiting tasks instead. Because LAS is particularly effective
when a workload has high variance in execution time [40], it
is expected to work well for modern cluster workloads.

Unfortunately, the naive employment of LAS can cause
unnecessary preemptions when tasks demand heterogeneous
resources. Due to this heterogeneity, a preempted task may
not offer the resources demanded by a waiting task. If a
node scheduler preempts running tasks greedily in decreasing
order of CET until it obtains sufficient resources, one or
more running tasks may be unnecessarily preempted. As an
illustration, consider the case depicted in Fig. 4. Let the
waiting task to resume be t, and suppose that there are three
running tasks, r0, r1, and r2, in decreasing order of CET
and the whole node capacity is separately allocated to them.
Because t has a shorter CET than those of the running tasks,
the node scheduler tries to preempt one or more running tasks
and resume t instead. The naive LAS will greedily preempt
all running tasks before it obtains sufficient resources for t.
However, r1 does not need to be preempted; preempting only
r0 and r2 offers 5 CPU cores and 8 units of memory, which
sufficiently meet t’s demand.

Because preempted tasks must wait until they are resumed
later and will suffer late completion, the number of task pre-
emptions should be minimized. Although LAS preferentially
preempts tasks with long CETs, if a node scheduler performs
unnecessary preemptions, it will eventually preempt tasks with
medium or short CETs, especially under high loads. Moreover,
even for long jobs, cluster schedulers should not compromise
their latency.



Algorithm 1 Generating preemption candidates
Input runningTasks ▷ Sorted in decreasing order of CET
Output Yielding preemption candidates one by one

1: candidates = []
2: for r in runningTasks[..N] do ▷ First N items
3: yield r ▷ Candidate consisting of a single running task
4: candidates.append(r)

5: len = candidates.length()
6: for i from 0 to len - 2 do ▷ Combine r and other tasks
7: c = combine(r, candidates[i])
8: yield c
9: candidates.append(c)

To avoid unnecessary preemptions, we modify LAS to find
a suitable set of running tasks for preemption that offers
sufficient resources for accommodating a waiting task. This
is done by examining the total allocated resources for each
set of running tasks. Specifically, letting running tasks be
r0, r1, r2, . . . in decreasing order of CET, a node scheduler
scans sets of running tasks in the following order to generate
preemption candidates:

{r0},
{r1}, {r1, r0},
{r2}, {r2, r0}, {r2, r1}, {r2, r1, r0},
. . .

If a running task does not offer sufficient resources for a
waiting task, the node scheduler combines it with other longer-
CET running tasks and checks whether the combination offers
sufficient resources. In the case of Fig. 4, because r2 (as well
as any combination of r0 and r1) does not offer sufficient
resources for t, the node scheduler skips preempting only r2
and proceeds to combine it with r0 and/or r1. Then, the node
scheduler realizes that the set {r2, r0} will suffice for t’s
demand and preempts them, leaving r1 untouched.

2) Algorithm: Alg. 1 shows the algorithm to generate pre-
emption candidates. For each running task, this algorithm first
generates a preemption candidate consisting of the running
task alone (Lines 3 and 4). Then, it generates other preemption
candidates by combining the task with previously-generated
candidates (Lines 5–9).

When a node has n running tasks, the number of possible
preemption candidates reaches 2n − 1. Because scanning all
candidates in the case of large n will take a long time, Alg. 1
considers up to the first N running tasks in decreasing order
of CET (Line 2). If preempting all N running tasks will not
suffice for the demand of a waiting task, the node scheduler
skips (re)starting the waiting task and proceeds to process
another waiting task. In our experiments (see Sec. V-B), N
did not need to be larger than 3 or 4.

Alg. 2 shows the overall algorithm of a node scheduler
based on the modified LAS described above. First, it tries to
start new tasks (i.e., those not yet started) immediately upon
assignment (Lines 1 and 2). Because most tasks require only
short durations to complete (as seen in Fig. 1), immediately

Algorithm 2 Node scheduler
Input newTasks, ▷ Sorted in order of submission

suspendedTasks, ▷ Sorted in increasing order of CET
runningTasks, ▷ Sorted in decreasing order of CET
Resource usage of the node

1: for t in newTasks do
2: TrySchedule(t, runningTasks)

3: runningTasks ▷ Prevent starvation
4: .filter(execTimeSinceStart > period)
5: for t in suspendedTasks do
6: runningTasks.filter(CET > t.CET)
7: ▷ Filter out running tasks with shorter CET than t’s
8: TrySchedule(t, runningTasks)

9: function TRYSCHEDULE(waitingTask, runningTasks)
10: if node has sufficient resources for waitingTask then
11: (Re)start waitingTask
12: Update resource usage of the node
13: return
14: for c in preemption candidates generated by Alg. 1 do
15: if c offers sufficient resources for waitingTask then
16: Preempt c and (re)start waitingTask
17: Remove c from runningTasks
18: Update resource usage of the node
19: return
20: return ▷ Failed to (re)start waitingTask

starting newly assigned tasks reduces the latency of short jobs
with high probability. If the node’s available resources are not
sufficient for the task’s demand, the node scheduler tries to
preempt one or more running tasks using the modified LAS
and start the new task instead (Lines 14–19). If it fails to find
a preemption candidate that offers sufficient resources, it skips
starting the new task (Line 20). The node scheduler performs
this process for all new tasks in order of job submission.

Then, the node scheduler tries to resume suspended tasks in
increasing order of CET (Lines 5–8). To ensure that tasks are
not preempted too frequently, the node schedulers implement
a starvation prevention mechanism. If a running task has not
been running for a certain no-interference period since its
most recent (re)start, the task is filtered out from the list
of running tasks (Lines 3 and 4). The length of the no-
interference period is calculated as W×(P+1), where W is a
configurable duration and P is the number of times the task has
been preempted. Tasks with shorter execution times than W
will likely complete quickly because they are not preempted
by other suspended tasks. Thus, the value of W should be
configured so that roughly 20% to 40% of tasks in a workload
will have execution times shorter than W . The period becomes
longer every time the task is preempted, which prevents an
unfair situation where long tasks are preempted many times.

IV. IMPLEMENTATION

We implemented a prototype of our cluster scheduler by
extending YARN [24], which is widely used as the re-
source management framework for Hadoop [41]. In YARN, a
ResourceManager on a master node arbitrates the cluster-
wide resource allocation among jobs. It defines a scheduler



interface and has some implementations, including the default
CapacityScheduler. The scheduler distributes tasks to
worker nodes by communicating with NodeManager dae-
mons running on each worker node. A NodeManager allo-
cates a logical bundle of resources to each assigned task, and
a ContainerManager in the node manages task execution.

We implemented our central scheduler by extending the
CapacityScheduler. The implementation either dis-
tributes tasks to worker nodes or waits if all nodes have higher
loads than a threshold, as described in Sec. III-C.

We implemented a node scheduler as a new thread spawned
from the ContainerManager. The thread runs a schedul-
ing loop periodically (every 1 s in our experiments), where
the node scheduler updates the CETs of running tasks, and
(re)starts or suspends tasks by following Alg. 2. As the
implementation of task preemptions, our node schedulers use
a container-based lightweight mechanism [15], as in Kairos.
It executes a task in a container and preempts the task by
dynamically reducing the resources allocated to the container.

V. EVALUATION

We evaluated our cluster scheduler using a real cluster and
workloads derived from a production environment. Here, we
report the following experiments:

• In Sec. V-B, we compare the performance of our sched-
uler against YARN [24] and Kairos [17].

• In Sec. V-C, we show the impact of the degree of
heterogeneity in tasks’ resource demands.

• In Sec. V-D, we analyze the sensitivity of our scheduler
to different parameter settings.

• In Sec. V-E, we evaluate the overhead and scalability of
the scheduling algorithm.

A. Setup

We used a cluster of CloudLab [42], [43] for evaluation. The
cluster consisted of 32 bare-metal c220g5 nodes: one master
(ResourceManager) and 31 workers (NodeManagers).
We configured each worker to manage 16 cores/32 threads of
Intel Xeon Silver 4114 processors and 64GB RAM. Nodes
were connected at 10Gbps. We installed Ubuntu 18.04 (Linux
kernel 4.15.0) and JDK 1.8.0 on all nodes.

To create realistic workloads, we first approximated the
empirical distributions of tasks extracted from the well-studied
Google trace [3] in terms of execution time, CPU demands,
and memory demands with separate log-normal distributions.
We used log-normal distributions because the empirical dis-
tributions can be approximated well by power-law-like heavy-
tailed distributions [1]. We truncated the distribution of execu-
tion times at 45min. 96% of tasks had execution times shorter
than 45min. Then, we sampled values from the distributions
to generate 500 Hadoop WordCount jobs. Each job had
eight identical mapper tasks and one reducer task, and each
task demanded the sampled numbers of cores and amount of
memory. We rounded values of memory demands to multiples
of 512MB. We modified the WordCount source code to
conduct an extra computation while consuming the demanded

resources so that we could increase a task’s execution time
by a controllable amount. A task would take the duration of
the sampled value to complete if it had been executed alone
on the cluster. The job inter-arrival time followed a Poisson
distribution with λ = 5 so that we could evaluate the cluster
schedulers under medium- and high-load conditions. The
resulting workloads took approximately 100min to complete.

We compared our scheduler against YARN Capacity Sched-
uler, Random scheduler, and Kairos. Random scheduler shares
the central scheduler with ours, but its node schedulers pre-
empt running tasks at random until they obtain sufficient
resources for a waiting task. Because Kairos assumes single-
type homogeneous resource demands, we modified it naively
so that we could input multi-type heterogeneous resource
demands. Specifically, we modified Kairos node schedulers
to greedily preempt running tasks in decreasing order of CET
until they obtain sufficient resources for a waiting task. For the
parameters of our scheduler, unless otherwise noted, we set the
threshold of load factors to L = 2.0, the maximum number
of running tasks to be considered for preemption to N = 4,
and the base length of no-interference periods to W = 120 s.
Approximately 28% of tasks had execution times shorter than
120 s. We used Hadoop 2.7.7, the latest version of the 2.7 se-
ries on which the original Kairos was implemented, as the base
source code. A task ran in a container using Docker 19.03.5
with an image sequenceiq/hadoop-docker:2.4.1.

B. Job Performance

We evaluated the cluster schedulers based on the distri-
butions of slowdown rates. The slowdown rate of a job is
defined as the actual job latency divided by the hypothetical
execution time if the job was executed alone on the cluster. The
distribution of slowdown rates is thus an index for measuring
latency with emphasis on short jobs.

Fig. 5 plots the CDF of slowdown rates for the workloads.
Compared to Kairos, our scheduler reduced the 90th percentile
of slowdown rates by 6.4% and the 99th percentile by 29%.
Our scheduler was more effective in reducing tail latency; the
maximum slowdown rate was 47% lower than that of Kairos.
Compared to YARN and Random scheduler, our scheduler
reduced the 90th percentile by 61% and 46%, and the 99th
percentile by 75% and 63%, respectively. Average latencies
were 906 s, 1006 s, 835 s, and 786 s with YARN, Random
scheduler, Kairos, and our scheduler, respectively.

One reason for this improvement is that our central sched-
uler distributes tasks to nodes so that as many tasks as possible
will run simultaneously on a cluster. Fig. 6 shows the numbers
of waiting and running tasks on the nodes with Kairos and our
scheduler during the experiments. The lines show the averages
of all nodes, and the filled ranges show the intervals of two
standard deviations from the averages. Our scheduler executed
more tasks than that of Kairos with less deviation under the
medium- to high-load conditions. This result implies that our
scheduler successfully reduced the time from job submission
to starting by distributing tasks based on the similarity between
resource demands and availability. Fig. 6 also shows that our



1.0 1.5 2.0 2.5 3.0 3.5 4.0
Slowdown rate

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

YARN
Random
Kairos
Proposed

Fig. 5. CDF of slowdown rates. (The tails of YARN and Random are
truncated for visibility; the maximum values were 9.9 and 6.4, respectively.)

0 20 40 60 80
Time [min]

0

10

20

30

Nu
m

be
r o

f t
as

ks

Kairos: Waiting
Kairos: Running
Proposed: Waiting
Proposed: Running

Fig. 6. Numbers of waiting and running tasks on the nodes. Lines show the
averages of all nodes, and filled ranges show two standard deviations.

scheduler did not degrade job throughput. Rather, as seen in
the right of the figure, the jobs in the workload completed at
a faster pace than that of Kairos.

Another reason for the improvement is that our node
schedulers reduce the number of preemptions, allowing more
tasks to continue running without interference. Our scheduler
reduced the total number of preemptions by 38.3% compared
to Kairos (from 812 to 501). Fig. 7 shows the distribution of
the numbers of preemptions. Our scheduler preempted tasks
no more than 18 times, while Kairos preempted tasks up
to 51 times. This is because our node schedulers have the
starvation prevention mechanism to prevent frequent preemp-
tions (Sec. III-D2). Thus, the number of preemptions was kept
small, preventing an unfair situation where a task suffered a
severe slowdown. This can also be seen in the low maximum
slowdown rate in Fig. 5.

Fig. 8 shows the distribution of the numbers of running
tasks preempted together in the preemption processes (Lines
14–19 in Alg. 2) to make room for a waiting task. With our
scheduler, 95% of preemption processes preempted only a
single running task, while with Kairos, the percentage was
79%. Our scheduler minimized the number of tasks preempted
in each preemption process by examining the heterogeneous
resource demands of waiting and running tasks. Only 0.17%
of the processes preempted four tasks, meaning that N (the
maximum number of running tasks to be considered for
preemption) could be set as small as 3.

0 10 20 30 40 50
Number of preemptions

0

25

50

75

100

125

Nu
m

be
r o

f t
as

ks

Kairos
Proposed

Fig. 7. Distribution of numbers of preemptions.

1 2 3 4 5 6 7 8
Number of tasks preempted together

0

20

40

60

80

100

Pe
rc

en
ta

ge

79

11
4.8 2.3 1.3 0.5 0.52 0.099

95

3.9 0.76 0.17

Kairos
Proposed

Fig. 8. Distribution of numbers of running tasks preempted together in
preemption processes to make room for a waiting task.

C. Impact of Heterogeneity

We next measured the effectiveness of our scheduler when
workloads have higher heterogeneity in tasks’ resource de-
mands. To do so, we modified the log-normal distributions
for the CPU demands and memory demands by scaling the
standard deviations of their underlying normal distributions by
various numbers. In this experiment, we reduced the cluster
size to 8 nodes, generated 100-job workloads, and changed
the average job inter-arrival time to λ = 24, allowing us to
conduct experiments with many parameter settings.

Fig. 9 shows the distribution of slowdown rates while
varying the scaling factor. As the scaling factor increased, the
workloads had higher heterogeneity in resource demands. In
all box plots in this paper, the whiskers are at the 5th and
99th percentiles. With Kairos, the slowdown rates increased
as the degree of heterogeneity increased. In contrast, our
scheduler maintained low slowdown rates, almost regardless
of the degree of heterogeneity. This result suggests that our
scheduler minimized the impact of high heterogeneity in
resource demands.

D. Parameter Sensitivity

We next analyzed how our scheduler performs under differ-
ent settings of L (threshold of load factors) and W (base length
of no-interference periods). Similar to Sec. V-C, we used an
8-node cluster and 100-job workloads.

Fig. 10 shows the distribution of slowdown rates with
Kairos and our scheduler with different settings of L and W
values. For L, while the settings L = 1.5, 2.5, 3.0 gave worse



0 1 2 3
Scaling factor of standard deviation

1

2

3

4

5

Sl
ow

do
wn

 ra
te

Kairos
Proposed

Fig. 9. Distribution of slowdown rates with variable heterogeneities in
resource demands. Large scaling factors indicate that workloads had high
heterogeneities.

Ka
iro

s

1.5

2.0

2.5

Sl
ow

do
wn

 ra
te

L=1.5
L=2.0

L=2.5
L=3.0

W
=90

s

W
=12

0s

W
=15

0s

W
=18

0s

Fig. 10. Distribution of slowdown rates with variable settings of L and W .

performances than the best-performing L = 2.0, they still out-
performed Kairos. For W , the duration 90 s, 120 s, 150 s, and
180 s were longer than the execution times of approximately
22%, 28%, 34%, and 39% of tasks, respectively. As with L,
the sub-optimal settings of W performed worse than the best
setting W = 120 s, but our scheduler consistently performed
better than Kairos. These results imply that our scheduler has
sufficient robustness against sub-optimal parameter settings.

E. Overhead and Scalability

Finally, we evaluated the overhead our scheduling algorithm
imposes on a cluster management system and the scalability
of our central scheduler in terms of the number of nodes.

1) Central Scheduler: Because all submitted jobs are first
processed in the central scheduler, it could be a bottleneck
for a cluster management system if it incurs high overhead.
Some modern clusters have more than 10,000 nodes [44], and
thus the central scheduler should process jobs within several
milliseconds for such large clusters. To quantify this overhead
on a large scale, we extracted the algorithm of the central
scheduler into a standalone Java program and measured its
computation time with dummy nodes and dummy job input.
The nodes and tasks had resource capacities and demands of
randomly selected values. We first warmed up the JVM and
then input 216 dummy jobs for each experiment.

Fig. 11 plots the distribution of durations for the central
scheduler to perform its scheduling algorithm for a task with
variable numbers of nodes. Because the algorithm calculates
a similarity score and a load factor for each node and iden-

210 211 212 213 214 215 216
Number of nodes

10 2

10 1

100

101

El
ap

se
d 

tim
e 

[m
s]

Fig. 11. Distribution of durations for the central scheduler to schedule a task
with variable numbers of nodes (log-log scale).

0 1 2 3 4
Elapsed time [ms]

Fig. 12. Distribution of durations for the node schedulers to run the
scheduling loop once.

tifies the node with the maximum score, its computational
complexity is O(N), where N is the number of nodes. The
experimental results agree with this theory, and the compu-
tation time grew linearly as the number of nodes increased.
We also observed that the central scheduler incurred only
negligible overhead. It took less than 1ms in most cases with
214(> 10, 000) nodes. Even with 216 nodes, the computation
time was as small as several milliseconds in most cases.

2) Node Scheduler: The node schedulers perform more
complicated computations compared to the central scheduler.
Although they run in parallel on each worker node, they should
process assigned tasks with low overhead to reduce job latency.

Fig. 12 plots the distribution of durations for the node
schedulers to run the scheduling loop (Sec. IV) once. Sim-
ilar to Sec. V-C, we used an 8-node cluster and a 100-job
workload. The duration data is aggregated from all worker
nodes and does not include data where there were no waiting
tasks. We found that the node schedulers took less than several
milliseconds for the scheduling in most cases.

Combining the results from Sec. V-E1 and Sec. V-E2, we
believe that our cluster scheduler imposes only negligible
overhead on a cluster management system and that it is
scalable to more than 10,000 nodes.

VI. CONCLUSION

In this paper, we present a cluster scheduler that heuris-
tically handles multi-type heterogeneous resource demands
without relying on the prior estimation of execution time. To
reduce job latency, especially that of short jobs, our scheduler
employs two techniques: (1) distributing tasks to nodes based
on the similarity between resource demands and availability,
and (2) finding the minimal set of tasks for preemption by
examining the heterogeneous resource demands. Experimental
evaluations on a real cluster and with practical workloads
demonstrate that our scheduler reduces job latency without
imposing high overhead and that it is more effective under
higher heterogeneity in resource demands.



Future directions include incorporating job-aware strategies
into our scheduler to support complicated job structures and
inter-task dependencies. We also plan to explore the integration
with estimation-based scheduling methods.

ACKNOWLEDGMENT

We are grateful to CloudLab for hosting the com-
puting infrastructure on which we conducted our large-
scale experiments. We also would like to thank Editage
(www.editage.com) for English language editing.

REFERENCES

[1] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” in Proceedings of the Third ACM Symposium on Cloud
Computing, 2012.

[2] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the Cloud: an
Analysis on Alibaba Cluster Trace,” in Proceedings of the 2017 IEEE
International Conference on Big Data, 2017, pp. 2884–2892.

[3] Google. Borg cluster traces from Google.
https://github.com/google/cluster-data.

[4] Alibaba. cluster data collected from production clusters in Alibaba for
cluster management research. https://github.com/alibaba/clusterdata.

[5] D. A. Lifka, “The ANL/IBM SP Scheduling System,” in Proceddins
of the Workshop on Job Scheduling Strategies for Parallel Processing,
1995, pp. 295–303.

[6] D. Carastan-Santos, R. Y. de Camargo, D. Trystram, and S. Zrigui,
“One can only gain by replacing EASY backfilling: A simple scheduling
policies case study,” in Proceedings of the 19th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, 2019, pp. 1–10.

[7] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-Resource Packing for Cluster Schedulers,” in Proceedings of the
2014 ACM Conference on SIGCOMM, 2014, pp. 455–466.

[8] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene:
Packing and Dependency-Aware Scheduling for Data-Parallel Clusters,”
in Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation, 2016, pp. 81–97.

[9] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and
S. Rao, “Efficient Queue Management for Cluster Scheduling,” in
Proceedings of the Eleventh European Conference on Computer Systems,
2016.

[10] M. Khelghatdoust and V. Gramoli, “Peacock: Probe-Based Scheduling
of Jobs by Rotating Between Elastic Queues,” in Proceedings of the
24th International European Conference on Parallel and Distributed
Computing, 2018, pp. 178–191.

[11] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M.
Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga, “Mercury:
Hybrid Centralized and Distributed Scheduling in Large Shared Clus-
ters,” in Proceedings of the 2015 USENIX Annual Technical Conference,
2015, pp. 485–497.

[12] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid Datacenter Scheduling,” in Proceedings of the 2015 USENIX
Annual Technical Conference, 2015, pp. 499–510.

[13] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware
Scheduling in Eagle: Divide and Stick to Your Probes,” in Proceedings
of the Seventh ACM Symposium on Cloud Computing, 2016, pp. 497–
509.

[14] Z. Wang, H. Li, Z. Li, X. Sun, J. Rao, H. Che, and H. Jiang, “Pigeon:
an Effective Distributed, Hierarchical Datacenter Job Scheduler,” in
Proceedings of the ACM Symposium on Cloud Computing 2019, 2019,
pp. 246–258.

[15] W. Chen, J. Rao, and X. Zhou, “Preemptive, Low Latency Datacenter
Scheduling via Lightweight Virtualization,” in Proceedings of the 2017
USENIX Annual Technical Conference, 2017, pp. 251–263.

[16] P. Garefalakis, K. Karanasos, and P. Pietzuch, “Neptune: Scheduling
Suspendable Tasks for Unified Stream/Batch Applications,” in Proceed-
ings of the ACM Symposium on Cloud Computing 2019, 2019.

[17] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Kairos: Preemp-
tive Data Center Scheduling Without Runtime Estimates,” in Proceed-
ings of the ACM Symposium on Cloud Computing 2018, 2018, pp. 135–
148.

[18] A. W. Mu’alem and D. G. Feitelson, “Utilization, Predictability, Work-
loads, and User Runtime Estimates in Scheduling the IBM SP2 with
Backfilling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 6, pp. 529–543, 2001.

[19] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger,
“3Sigma: Distribution-based cluster scheduling for runtime uncertainty,”
in Proceedings of the Thirteenth EuroSys Conference, 2018.

[20] A. Ilyushkin and D. Epema, “The Impact of Task Runtime Estimate
Accuracy on Scheduling Workloads of Workflow,” in Proceedings of
the 18th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, 2018, pp. 331–341.

[21] A. Ilyushkin, B. Ghit, and D. Epema, “Scheduling Workloads of
Workflows with Unknown Task Runtimes,” in Proceedings of the
15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, 2015, pp. 606–616.

[22] B. Ghit and D. Epema, “Tyrex: Size-Based Resource Allocation in
MapReduce Frameworks,” in Proceedings of the 16th IEEE/ACM In-
ternational Symposium on Cluster, Cloud, and Grid Computing, 2016,
pp. 11–20.

[23] Z. Hu, B. Li, Z. Qin, and R. S. M. Goh, “Job Scheduling without Prior
Information in Big Data Processing Systems,” in Proceedings of the
37th IEEE International Conference on Distributed Computing Systems,
2017, pp. 572–582.

[24] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in Proceedings of
the 2013 ACM Symposium on Cloud Computing, 2013.

[25] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Re-optimizing Data-Parallel Computing,” in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
2012.

[26] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
Aware Cluster Management,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2014, pp. 127–144.

[27] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: Guaranteed Job Latency in Data Parallel Clusters,” in Pro-
ceedings of the 7th ACM European Conference on Computer Systems,
2012, pp. 99–112.

[28] A. Tumanov, A. Jiang, J. W. Park, M. A. Kozuch, and G. R. Ganger,
“JamaisVu: Robust Scheduling with Auto-Estimated Job Runtimes,”
Parallel Data Laboratory, Carnegie Mellon University, Tech. Rep., 2016.

[29] M. Nuyens and A. Wierman, “The Foreground-Background queue: A
survey,” Performance Evaluation, vol. 65, pp. 286–307, 2008.

[30] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types,” in Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation, 2011.

[31] L. Wei, C. H. Foh, B. He, and J. Cai, “Towards Efficient Resource Allo-
cation for Heterogeneous Workloads in IaaS Clouds,” IEEE Transactions
on Cloud Computing, vol. 6, no. 1, pp. 264–275, 2018.

[32] L. Xu, A. R. Butt, S.-H. Lim, and R. Kannan, “A Heterogeneity-
Aware Task Scheduler for Spark,” in Proceedings of the 2018 IEEE
International Conference on Cluster Computing, 2018, pp. 245–256.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in
Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, 2012.

[34] S. Mitra, S. S. Mondal, N. Sheoran, N. Dhake, R. Nehra, and R. Simha,
“DeepPlace: Learning to Place Applications in Multi-Tenant Clusters,”
in Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems, 2019, pp. 61–68.

[35] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for Vector
Bin Packing,” Microsoft Research, Tech. Rep., 2011.

[36] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, Low Latency Scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, 2013, pp. 69–84.

[37] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: Scalable and Coordinated Scheduling for Cloud-
Scale Computing,” in Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation, 2014, pp. 285–300.



[38] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards Char-
acterizing Cloud Backend Workloads: Insights from Google Compute
Clusters,” ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 4, pp. 34–41, 2010.

[39] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and Synthesizing Task Placement Constraints in Google
Compute Clusters,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing, 2011.

[40] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack, “Analysis of LAS
Scheduling for Job Size Distributions with High Variance,” in Pro-
ceedings of the 2003 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 2003, pp. 218–228.

[41] Apache Hadoop. https://hadoop.apache.org.
[42] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The Design and Operation of CloudLab,” in Proceedings of
the 2019 USENIX Annual Technical Conference, 2019.

[43] CloudLab. https://www.cloudlab.us.
[44] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand,

“Firmament: Fast, Centralized Cluster Scheduling at Scale,” in Proceed-
ings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, 2016, pp. 99–115.


