
Toward Cloud-based FIDO Authentication
with Secure Credentials Recovery

Momoko Shiraishi
The University of Tokyo, Japan

Takahiro Shinagawa
The University of Tokyo, Japan

ABSTRACT
FIDO is an alternative to password authentication for logging into
web services securely through public key authentication. However,
credentials for FIDO is unique to physical authentication devices,
leading to lockout from associated web services in case access to
the devices is lost. We propose Cloudauthn, a cloud-based FIDO
authentication scheme that can perform key management and re-
covery without compromising security. To avoid storing credentials
directly in untrusted clouds, Cloudauthn introduces certifying keys
that serve as proxies for device’s credentials and are securely man-
aged in TEEs in the cloud. To facilitate key recovery and revocation
for many web services, Cloudauthn revokes old credentials and
register new ones efficiently using the certifying keys.

1 INTRODUCTION
Fast IDentity Online (FIDO) [4] has attracted significant attention as
a notable alternative to traditional password authentication. While
password authentication is inherently difficult to counter deceptive
attacks against humans such as phishing and man-in-the-middle
attacks (MITM), FIDO can mitigate such attacks by leveraging a
public key authentication scheme designed for use in web services.

However, FIDO authentication still has challenges in securely
recovering access to services when the access to authenticator
devices is lost. To preserve security, FIDO credentials, which include
private keys, are stored on devices, such as smartphones or security
keys. Therefore, if the devices are damaged, lost, or stolen, the user
may be locked out of FIDO-authenticated web services.

There are several issues with secure credentials recovery. The
first is credentials availability; access to credentials must be eas-
ily recoverable even if one or all authenticator devices are lost
to withstand worst case scenarios such as disasters. The second
is credentials security; credentials should not be extracted from
authenticator devices to prevent credentials leakage. The third is
recovery scalability; access to previously registered web services can
be quickly restored when a new authenticator device is registered
even if there are hundreds of registered web services [6].

Previous studies have proposed several approaches to storing
credentials in alternative locations. For example, some studies pro-
posed having a backup token dedicated to recovery [3, 8], while
others proposed introducing a group signature that allows login
from multiple devices [2]. These approaches, however, could result
in a complete loss of credentials when all authenticator devices are
lost. Passkey [1] achieves credentials availability by copying cre-
dentials across multiple devices, but extracting from authenticator
devices is undesirable for the security reason.

We propose Cloudauthn, a cloud-based FIDO authentication
scheme that can achieve credentials availability and scalability
without compromising the security. The key idea of Cloudauthn is
to introduce certifying keys that act as proxies for authenticator

Figure 1: Overview of Cloudauthn

devices. To achieve credentials availability, Cloudauthn stores cer-
tifying keys in the cloud and enables authenticator devices whose
FIDO authentication public keys are certified by the certifying keys,
even new ones, to log in to previously registered web services. Even
If all authenticators are lost, existing identity proofing methods,
such as a government eID or ePassport, could be used to certify
new authenticators using certifying keys. To achieve credentials se-
curity, Cloudauthn encrypts the certifying keys with authenticator
devices and manages them in the Trusted Execution Environments
(TEEs) so that even cloud vendors cannot access the certifying keys.
To achieve recovery scalability, under Cloudauthn, the recovery
procedure, i.e., the task of associating a new authenticator with a
certifying key, requires execution merely once. Also, a revoked au-
thenticator list certified by certifying keys is sent to every website
all at once.

2 DESIGN AND IMPLEMENTATION
Design. Figure 1 shows an overview of Cloudauthn. The core

idea to ensure credentials availability is certifying keys. The key
is called a ’certifying key’ because the key certifies that a FIDO
key belongs to the legitimate user. Websites allow login requests
from any authenticator, provided that the authenticator’s FIDO au-
thentication public key has been certified (signed) by the certifying
key.

To preserve the security of certifying keys, Cloudauthn maintain
the keys in a TEE; our current implementation uses a confidential
VM based on AMD SEV-SNP as the TEE. Within this VM, a vTPM
(virtual Trusted Platform Module) is emulated and also a TPM
server is deployed separately. The TPM server stores certifying
keys for each user’s authenticator in NV (non-volatile) files. This
separation ensures confidentiality and integrity, as the vTPM’s state
data stored by a hypervisor is otherwise vulnerable to access from
the untrusted hypervisor [7].

ACSAC 2023 (poster), 2023, Austin, Texas, USA Momoko Shiraishi and Takahiro Shinagawa

Figure 2: Registration with Cloudauthn Service

Implementation. When a VM starts, the AMD-SP (Security Pro-
cessor) measures the VM’s vTPM. If the measurement is correct, an
attestation key pair (𝑉𝐴𝑆𝐾 , 𝑉𝐴𝑃𝐾) is generated in the vTPM. The
public key (𝑉𝐴𝑃𝐾) is included in an attestation statement, signed
by the AMD versioned chip endorsement key (𝑉𝐶𝐸𝑆𝐾).

Before interacting with RPs, a user sets up an account with
Cloudauthn and registers their authenticator. The key steps, as
outlined in Figure 2, include:

• Through attestation, AMD-SP validates the vTPM and UEFI
binary(①), while vTPM confirms the guest OS and apps,
including the TPM server(②).

• Proofs using the TPM server’s attestation key pair (𝑆𝐴𝑆𝐾 ,
𝑆𝐴𝑃𝐾) show that the certifying keys (𝐷𝑆𝐾 , 𝐷𝑃𝐾) are within
the legitimate TPM server, and are sent to the user (③, ④).

• The signature⑤ is created by a certifying key on a temporary
public key. Users have a sufficiently large number of tempo-
rary signing and certifying keys equivalent to the number
of RPs they will use. Each temporary public key (𝑇𝑃𝐾) is
signed by a certifying key.

In the TPM server, each NV file is encrypted with a symmetric key.
This key is doubly wrapped by a VM’s symmetric key and a user’s
asymmetric key to prevent certifying key leakage.

To add a new authenticator in Cloudauthn, users authenticate
with an existing one, then decrypt and duplicate the NV file. Follow-
ing the registration in Figure 2, the NV file is re-encrypted using the
new authenticator’s key. Users can also use methods like eIDs for
manipulating certifying keys, distributing the NV file’s encryption
key across clouds through secret sharing. Sensitive data, such as
eID data, are encrypted with the user’s own key, ensuring they
remain undisclosed to the cloud.

After registering an authenticator with Cloudauthn, the user
can register it with any RP and log in, similar to the existing
FIDO process. The difference lies in the user also sending a set
of data related to the certifying key including ① - ⑤. ① - ④ ensures
the legitimacy of the location where the certifying key is gener-
ated, forming a trust chain from the AMD root key to the certify-
ing key (𝐴𝑀𝐷 𝑟𝑜𝑜𝑡 𝑘𝑒𝑦 → 𝐴𝑆𝐾(𝐴𝑀𝐷 𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑘𝑒𝑦) → 𝑉𝐶𝐸𝑆𝐾 →
𝑉𝐴𝑆𝐾 → 𝑆𝐴𝑆𝐾 → 𝐷𝑃𝐾). The legitimacy of where both the FIDO
key (𝐹𝑆𝐾 , 𝐹𝑃𝐾) and the temporary key are generated is proved by
the authenticator’s attestation key’s signature (𝜎𝐴𝐴𝑆𝐾 (...| |𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒
| |𝑇𝑃𝐾 | |𝐹𝑃𝐾 | |...) (⑥)). Since the RP specifies the FIDO key pair in
terms of algorithm and other criteria, the temporary key used be-
fore account opening is prepared. Now both the temporary and

FIDO keys are signed by the same attestation key (⑥) and the
temporary key is linked to the certifying key(⑤ and an additional
signature 𝜎𝑇𝑆𝐾 (𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒)(⑦)) , therefore the FIDO key becomes
indirectly linked to the certifying key. The RP then stores both the
certifying key and FIDO key. The certifying key’s association with
the RP’s domain is cloud-synchronized and shared across all user
authenticators.

At the RP, since the RP recognizes the user’s consistent certifying
key, login is possible with any authenticator, even unregistered ones,
by presenting the ⑤, ⑥ and ⑦ for that authenticator.

If a hardware authenticator becomes inaccessible, recovery starts
with Cloudauthn login using an available hardware authenticator
or the alternative identity verification method. The NV file of the
inaccessible device is deleted, and the device is added to a revocation
list. The user then shares the list with all relevant domains. If
all hardware authenticators are lost, a new one is registered to
Cloudauthn via the hardware-independent method, allowing the
user to resume regular logins at each RP with the new authenticator.

Performance evaluation.We have deployed the Cloudauthn
service on an Azure instance with an AMD EPYC 7763v CPU (32-
core, 128 GB RAM) and a RP on a GCP instance with an Intel Xeon
E5-2696V3 CPU (16-core, 60 GB RAM). Both run on Ubuntu 20.04
LTS. The TPM server uses the ibmtpmmodule [5]. The client device
is a MacBook Pro 13.3-inch mid-2020 with a 2.3 GHz Core i7, 16
GB RAM, and Touch ID, running Big Sur 11.7.10 with Safari 14.1.3.
Registration time with Cloudauthn increases with more certifying
keys; it takes about 57.75 seconds for 10 keys and 500.81 seconds
for 100 keys. Registering with a RP takes 621.89 milliseconds. These
results show that the proposal is feasible for practical use.

Future Work.More refined proofs of security for the proposed
approach are expected. A detailed comparison with other methods
in terms of security and performance is also desired.

REFERENCES
[1] Apple. 2023. Supporting Passkeys. https://developer.apple.com/documentation/

authenticationservices/public-private_key_authentication/supporting_
passkeys. (2023). Online; accessed 2023-11-01.

[2] Sunpreet S Arora, Saikrishna Badrinarayanan, Srinivasan Raghuraman, Maliheh
Shirvanian, Kim Wagner, and Gaven Watson. 2022. Avoiding lock outs: Proactive
FIDO account recovery using managerless group signatures. Cryptology ePrint
Archive (2022).

[3] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, MarkManulis,
and Dain Nilsson. 2020. Asynchronous Remote Key Generation: An Analysis of
Yubico’s Proposal for W3C WebAuthn. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 939–954.

[4] Jeff Hodges, J Jones, Michael B Jones, Akshay Kumar, and Emil Lundberg. 2021.
Web authentication: An API for accessing public key credentials level 2. World
Wide Web Consortium, Cambridge, MA, USA (2021).

[5] IBM. 2023. Software TPM 2.0. https://sourceforge.net/projects/ibmswtpm2/files/
latest/download. (2023). Accessed: 2023-11-01.

[6] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes,
and Sven Bugiel. 2020. Is FIDO2 the kingslayer of user authentication? A com-
parative usability study of FIDO2 passwordless authentication. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 268–285.

[7] Vikram Narayanan, Claudio Carvalho, Angelo Ruocco, Gheorghe Almási, James
Bottomley, Mengmei Ye, Tobin Feldman-Fitzthum, Daniele Buono, Hubertus
Franke, and Anton Burtsev. 2023. Remote attestation of SEV-SNP confidential
VMs using e-vTPMs. arXiv preprint arXiv:2303.16463 (2023).

[8] Alex Takakuwa. 2019. Moving from Passwords to Authenticators. Ph.D. Disserta-
tion.

https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://sourceforge.net/projects/ibmswtpm2/files/latest/download
https://sourceforge.net/projects/ibmswtpm2/files/latest/download

	Abstract
	1 Introduction
	2 Design and Implementation
	References

