
Toward Efficient Fuzzing of Nested Virtualization

Reima Ishii
The University of Tokyo

Tokyo, Japan

Takaaki Fukai
National Institute of

Advanced Industrial Science and Technology
Tokyo, Japan

Takahiro Shinagawa
The University of Tokyo

Tokyo, Japan

Abstract
Infrastructure-as-a-Service (IaaS), such as Amazon EC2

and Google Compute Engine, provides virtual machines
(VMs) to users while protecting their hardware resources
by using hypervisors. Since a vulnerability in hypervisors can
cause serious problems in resource protection, improving hy-
pervisor security is critical. In addition, recent IaaS providers
support nested virtualization, which allows users to run their
own L1 hypervisors on top of the provider’s L0 hypervisors,
and then run L2 guest OSs on the L1 hypervisors. Since nested
virtualization is realized by emulating hardware-assisted vir-
tualization functions, such as Intel VT-x and AMD-V, in the
L0 hypervisors, the security of the emulation functions is
equally important. However, hardware-assisted virtualization
functions are complex in specification, and vulnerabilities are
often discovered in their emulation implementations.

Fuzzing is generally an effective approach to finding soft-
ware vulnerabilities, in which random data is repeatedly input
into the target software and its execution is monitored to find
defects. However, applying fuzzing to nested virtualization
poses the following challenges; (1) Appropriate initialization:
randomly generated instruction sequences do not complete
the initialization of hardware-assisted virtualization functions
easily, while executing existing initialization code does not
fuzz emulation code sufficiently. (2) Huge VM state space:
trying all possible states is impractical, while generating near-
valid VM states from random data without prior knowledge
is difficult. (3) Various CPU configurations: the CPU func-
tions to be emulated are determined at L0 hypervisor startup,
making it difficult to fuzz various emulation codes from VMs.

Several studies have applied fuzzing to hypervisors. How-
ever, most of them target the fuzzing of virtual CPUs and
virtual devices, and few address the issues of nested virtual-
ization. Syzkaller, a state-of-the-art Linux system call fuzzer,
can fuzz the KVM’s nested virtualization using system call
sequences. However, Syzkaller does not directly address the
challenges of nested virtualization; it uses fixed initialization
code, randomly generated data as VM state, and a fixed CPU
configuration. Thus, it is difficult to improve code coverage.

We propose a novel scheme for efficient fuzzing of nested
virtualization. First, to address the challenge of (1) appropri-
ate initialization, we create a dedicated small harness that
executes a instruction sequence mutated from a template of
the correct initialization code, enabling the execution of a
variety of nearly correct initialization codes. Second, for the
challenge of (2) huge VM state space, we introduce the VM
state validator that can round randomly generated VM states
to valid states, thus efficiently producing VM states on the
boundary of valid and invalid states. Finally, for (3) various
CPU configurations, we introduce a system that automatically
restarts the L0 hypervisor using the fuzzer-generated values
as startup parameters.

We implemented the proposed scheme using a standard
fuzzer AFL++. The fuzzing target was Intel VT-x nested
virtualization in KVM. The dedicated small harness was im-
plemented as a single binary with the L1 hypervisor and L2
guest OS integrated, based on VMXBench. The VM state
validator was implemented by porting and bug fixing Bochs’
VMCS checker code. Hypervisor parameter fuzzing was im-
plemented by interfacing AFL++ with KVM’s module load-
ing scripts. We used kcov to obtain coverage and enabled the
sanitizers KASAN, KCSAN, and UBSAN.

We used this implementation to measure code coverage of
KVM’s nested virtualization and compared it to KVM’s self-
test and Syzkaller. Experimental results of measuring the cov-
erage of nested.c in KVM showed that the proposed method
reached 81.3% in 54 hours, compared to 55.2% for selftest
and 69.0% at most for Syzkaller after 564 hours of fuzzing.

As a result of actual fuzzing, we discovered a previously
unknown vulnerability in the nested virtualization function
of KVM. We reported this vulnerability to the Linux Kernel
developers, and a patch was immediately created. The vulner-
ability was also assigned CVE-2023-30456 and determined
to have a Base Score of 6.5 Medium.

In the future, we plan to expand the coverage evaluation to
codes other than nested.c. We also aim to apply the proposed
scheme to different architectures, such as AMD CPUs, and to
hypervisors other than KVM.

1


