Toward Cloud-based FIDO Authentication with Secure Credentials Recovery

Momoko Shiraishi
The University of Tokyo
shiraishi@os.ecc.u-tokyo.ac.jp

Takahiro Shinagawa
The University of Tokyo
shina@ecc.u-tokyo.ac.jp

1 Background

Fast IDentity Online (FIDO) is emerging - leverages public key authentication

- Resistant to attacks
e.g., phishing and man-in-the-middle

X Account recovery
when authentication devices are lost

2 Challenges & Previous Work

Challenge 1. Credential availability

- Loss of (all) auth. devices does not lead to loss of credentials
 ←→ 😐 A backup token dedicated to recovery [1, 2]
 ←→ 😐 A group signature for multiple devices [3]

Challenge 2. Credential security

- Certifying keys are stored in a TEE in the cloud
 - Certifying that a FIDO key belongs to the legitimate user
- Certified FIDO keys are used to login to web services
 - Even with a brand new authentication device
- Old FIDO keys are revoked automatically
 - The cloud holds Registered Keys & Services List

✅ Credentials availability
- Certifying keys are always maintained in the cloud
- A new authentication device can be easily registered
- Using existing authentication devices (if available)
- Using the cloud with ID proofing methods
 - e.g., eID, ePassport, ...

✅ Credentials security
- Certifying keys are maintained in a TEE
- Always encrypted in both memory and storage
- Even malicious cloud providers cannot access the keys
- FIDO private keys never leave the authentication devices
 - Kept in tamper-proof devices

✅ Recovery scalability
- The cloud maintains Registered Keys & Services List
 - Certifying keys, registered FIDO key IDs, domains of websites
- Users notify the cloud of lost authentication devices
 - The cloud automatically revokes the old FIDO keys
- Users can immediately access the registered web services
 - Users register a new authentication device to the cloud
 - The cloud certifies FIDO keys of the authentication device
 - Web services accept the keys certified by the cloud

3 Proposal: Cloudauthn

- A cloud-based FIDO authentication scheme
 - Certifying keys are maintained in a TEE in the cloud
 - Certifying that a FIDO key belongs to the legitimate user
 - Certified FIDO keys are used to login to web services
 - Even with a brand new authentication device
 - Old FIDO keys are revoked automatically
 - The cloud holds Registered Keys & Services List

✅ Credentials availability
- Certifying keys are always maintained in the cloud
- A new authentication device can be easily registered
- Using existing authentication devices (if available)
- Using the cloud with ID proofing methods
 - e.g., eID, ePassport, ...

✅ Credentials security
- Certifying keys are maintained in a TEE
- Always encrypted in both memory and storage
- Even malicious cloud providers cannot access the keys
- FIDO private keys never leave the hardware devices
 - Kept in tamper-proof devices

✅ Recovery scalability
- The cloud maintains Registered Keys & Services List
 - Certifying keys, registered FIDO key IDs, domains of websites
- Users notify the cloud of lost authentication devices
 - The cloud automatically revokes the old FIDO keys
- Users can immediately access the registered web services
 - Users register a new authentication device to the cloud
 - The cloud certifies FIDO keys of the authentication device
 - Web services accept the keys certified by the cloud

4 Implementation

- The cloud is a confidential VM (AMD SEV-SNP)
- Certifying keys are stored in Non Volatile (NV) files of a TPM server
 - Each NV file is encrypted with each authenticator’s key
 - Users can verify the cloud’s environment through attestation
- At registration with the cloud, users obtain
 - Certificates on FIDO keys issued by the cloud
 - Attestation proofs for the certifying keys based on hardware trust
- At registration with web services, users submit these proofs

5 Future Works

- Detailed security & performance analysis
- Comparison with previous studies

References