

Jane Doe123 Passkey

Sign In

Toward Cloud-based FIDO Authentication with Secure Credentials Recovery

Momoko Shiraishi

The University of Tokyo shiraishi@os.ecc.u-tokyo.ac.jp Takahiro Shinagawa

The University of Tokyo shina@ecc.u-tokyo.ac.jp

1 Background

Fast IDentity Online (FIDO) is emerging - leverages public key authentication

W Resistant to attacks

e.g., phishing and man-in-the-middle **X** Account recovery

when authentication devices are lost

2 Challenges & Previous Work

Challenge 1. Credential availability

Loss of (all) auth. devices does not lead to loss of credentials

- <-->
 A backup token dedicated to recovery [1, 2]
- $<--> \stackrel{\smile}{=} A$ group signature for multiple devices [3]

Challenge 2. Credential security

Credentials (private keys) never leave hardware devices <-->
Passkeys (multi-device FIDO credential)

Challenge 3. Recovery scalability

Recovery of web access does not take much time and effort [4]

3 Proposal: Cloudauthn

- A cloud-based FIDO authentication scheme
 - <u>Certifying keys</u> are maintained in a TEE in the cloud
 - Certifying that a FIDO key belongs to the legitimate user
 - Certified FIDO keys are used to login to web services
 - Even with a brand new authentication device
 - Old FIDO keys are revoked automatically
 - The cloud holds *Registered Keys & Services List*

Credentials availability

- Certifying keys are always maintained in the cloud
- A new authentication device can be easily registered
 - Using existing authentication devices (if available)
 - Using the cloud with ID proofing methods
 - e.g., eID, ePassport, ...

Credentials security

- **Certifying keys** are maintained in a TEE

Recovery scalability

- The cloud maintains Registered Keys & Services List
 - Certifying keys, registered FIDO key IDs, domains of websites
- Users notify the cloud of lost authentication devices
- Always encrypted in both memory and storage Even malicious cloud providers cannot access the keys - FIDO private keys never leave the authentication devices - Kept in tamper-proof devices
- The cloud automatically revokes the **old FIDO keys**
- Users can immediately access the registered web services
 - Users register a new authentication device to the cloud
 - The cloud certifies **FIDO keys** of the authentication device
 - Web services accept the keys certified by the cloud

4 Implementation

- The cloud is **a confidential VM** (AMD SEV-SNP)
- Certifying keys are stored in Non Volatile (NV) files of a TPM server
- Each NV file is encrypted with each authenticator's key
- Users can verify the cloud's environment through attestation
- At registration with the cloud, users obtain
 - certificates on FIDO keys issued by the cloud
 - attestation proofs for the **certifying keys** based on **hardware trust**
- At registration with web services, users submit these proofs

5 Future Works

- Detailed security & performance analysis

[1] N. Frymann et al. Asynchronous Remote Key Generation: An Analysis of Yubico's Proposal for W3C WebAuthn. ACM CCS. (2020)

Authenticator Registration with Cloudauthn

[2] Alex Takakuwa. Moving from Passwords to Authenticators. Ph.D. Dissertation. (2019)

[3] S. Arora et al. Avoiding lock outs: Proactive FIDO account recovery using managerless group signatures. Cryptology ePrint Archive.

References

[4] S. Lyastani et al. Is FIDO2 the kingslayer of user authentication? A comparative usability study of FIDO2 passwordless

authentication. IEEE S&P. (2020)