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Previous Hypervisor Fuzzing2

Proposal: Specialized Fuzzing for Nested Virtualization3

- Recent IaaS providers support nested virtualization

- Users run their own L1 hypervisors and L2 guest OSs 

- Ensuring security in nested virtualization is crucial

Focus Was Not on Nested Virtualization

- Virtual Devices
- PIO, MMIO, DMA, etc.

- Virtual CPU
- Task Switch, APIC Emu, MSR Emu, etc.

Insufficient Coverage of 
Nested Virtualization

- Even advanced fuzzer like Syzkaller

- The proposed method achieved 81.3% code coverage in 54 hours

Proposal 2: VM State Validator

- Randomly generated VM states are rounded to valid states
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Background1

Implementation4 Evaluation6

Challenge 2: Huge VM State Space

- Enormous state space of VMs makes testing all possible 
states impractical

- Small Harness: based on VMXbench

- VM State Validator: ported from Bochs’ VMCS checker code

- Fuzzer (Input generation): AFL++, an existing fuzzer

- Coverage collection: kcov

- Bug detection: KASAN, KCSAN and UBSAN
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Proposal 1: Small Harness

- Executes an instruction sequence mutated from a template of 
correct initialization code

- Discover a new vulnerability (CVE-2023-30456) in KVM
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Challenge 1: Proper Initialization of L2

- Randomly generated instruction sequences struggle to 
complete initialization

Proposed method
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Challenge 3: Various vCPU Configurations

- vCPU behavior are determined at L0 hypervisor startup

Proposal 3: Parameter Fuzzing

- Fuzzing parameters at L0 hypervisor startup
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Fuzzing Experiment on KVM5

- Focused on Intel VT-x nested virtualization

- Compare code coverage of KVM’s nested virtualization
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