
Toward Efficient Fuzzing of Nested Virtualization

Reima Ishii
The University of Tokyo
ishiir@g.ecc.u-tokyo.ac.jp

Previous Hypervisor Fuzzing2

Proposal: Specialized Fuzzing for Nested Virtualization3

- Recent IaaS providers support nested virtualization

- Users run their own L1 hypervisors and L2 guest OSs

- Ensuring security in nested virtualization is crucial

Focus Was Not on Nested Virtualization

- Virtual Devices
- PIO, MMIO, DMA, etc.

- Virtual CPU
- Task Switch, APIC Emu, MSR Emu, etc.

Insufficient Coverage of
Nested Virtualization

- Even advanced fuzzer like Syzkaller

- The proposed method achieved 81.3% code coverage in 54 hours

Proposal 2: VM State Validator

- Randomly generated VM states are rounded to valid states

Takahiro Shinagawa
The University of Tokyo

shina@ecc.u-tokyo.ac.jp

Background1

Implementation4 Evaluation6

Challenge 2: Huge VM State Space

- Enormous state space of VMs makes testing all possible
states impractical

- Small Harness: based on VMXbench

- VM State Validator: ported from Bochs’ VMCS checker code

- Fuzzer (Input generation): AFL++, an existing fuzzer

- Coverage collection: kcov

- Bug detection: KASAN, KCSAN and UBSAN

The University of Tokyo, Shinagawa Laboratory.

Proposal 1: Small Harness

- Executes an instruction sequence mutated from a template of
correct initialization code

- Discover a new vulnerability (CVE-2023-30456) in KVM

L0 Hypervisor

L1 Hypervisor

L2 Guest OS

VM

Fuzzer

Input

Coverage

Input②VM State Validator

Challenge 1: Proper Initialization of L2

- Randomly generated instruction sequences struggle to
complete initialization

Proposed method

Takaaki Fukai
National Institute of Advanced

Industrial Science and Technology
takaaki.fukai@aist.go.jp

VM
state

①Small Harness

③Fuzzed
parameters

Hardware

VM

VM…

L0 Hypervisor
Vulnerability

Malicious User

Nested
Virtualization

Attack!
L2

Guest OS
L1

Hypervisor

VM

L1 Guest OS

L0 Hypervisor Virtual Devices / vCPUs

Fuzzing!

L0 Hypervisor

L1 Hypervisor

L2 Guest OS

VM

Nested Virtualization

Fuzzing!

L1 & L2

instruction
execution

Challenge 3: Various vCPU Configurations

- vCPU behavior are determined at L0 hypervisor startup

Proposal 3: Parameter Fuzzing

- Fuzzing parameters at L0 hypervisor startup

③Fuzzed
parameters

L0’s Variety of
Emulation Codes…

vCPUs

Fuzzing Experiment on KVM5

- Focused on Intel VT-x nested virtualization

- Compare code coverage of KVM’s nested virtualization

Random
instruction code Init fail

Fuzzer
generates

Just execute

①Small Harnesstemplate
instruction code

Mutate args,
combinationPrepared

in advance Init
success

All Possible VM States

Randomly
Generated States Valid States

Partially invalidate!
Induce bugs!

Randomly
Generated States

②VM state validator Valid States

Abstract:

	スライド 1

